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Abstract
Based on electronic structure calculations and statistical methods, we
investigate a new class of materials for spintronic applications: half-metallic
antiferromagnetic diluted magnetic semiconductors (HMAF-DMSs). As shown
recently by Akai and Ogura, these DMS systems contain equal amounts of
low-valent and high-valent transition metal impurities, such that their local
moments exactly compensate each other. We present ab initio calculations
using the KKR-CPA and the PAW-supercell methods, and show that quite a
few half-metallic antiferromagnets should exist. Our calculations demonstrate
that the exchange coupling parameters in these systems are dominated by a
strong antiferromagnetic interaction between the two impurities. The Néel
temperatures are calculated by Monte Carlo simulations and in mean-field
approximation. It is shown that the latter method strongly overestimates the
critical temperatures and that the more realistic values obtained by Monte Carlo
techniques are rather low.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, there has been a great interest in various materials aimed for applications in
spintronics [1–3]. Combining the electronic charge and spin degrees of freedom opens up the
possibility for materials with new functionality. This includes magnetic multilayers which are
used in giant magnetoresistance read-heads in hard disks, diluted magnetic semiconductors
(DMSs) and half-metallic ferromagnets like Heusler alloys. In particular, DMS systems have
attracted lots of attention [4–7], both theoretically and experimentally, ever since the discovery
of large-Tc ferromagnetism in Mn-doped GaAs by Ohno in 1998 [3]. In the last few years,
more sophisticated control over defects in the samples and annealing have increased the critical
temperature, Tc, from around 110 K to around 175 K for Mn-doped GaAs. Still, the Tc is well
below room temperature, which prohibits a practical use of this material for devices. Many
other systems have been suggested to have room-temperature ferromagnetism, including the
III–V systems GaP [8] and GaN [9, 10] doped with Mn, the II–VI system ZnTe doped with
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Cr [11] and Co-doped ZnO [12, 13]. Maybe the II–VI systems are the most promising due to the
fact that the solubility of magnetic transition metal atoms is much higher than for III–V systems.
However, in all these studies one comes to the conclusion that the critical temperatures are
very dependent on the sample preparation, the number of (non-magnetic) defects and possible
clustering of the magnetic atoms.

Recently, Akai and Ogura [14] proposed some new form of DMS systems, i.e. half-metallic
antiferromagnetic diluted magnetic semiconductors. They are very different from the standard
ferromagnetic or disordered-local-moment (DLM) phases of DMSs. Necessarily, they contain
equal concentrations of two kinds of impurity, e.g. Cr and Fe in Zn1−2xCrxFex Se, such that
the moments of these impurities, i.e. of Cr and Fe, are equal and exactly compensate each
other by antiparallel alignment. To obtain half-metallicity, it is essential that both impurities
are chemically different. Note that in an elemental antiferromagnet the density of states for the
two sublattices differs only by an exchange of the spin directions, such that the total density
of states is the same for both spin directions. Therefore elemental antiferromagnets are either
metals or insulators, but cannot be half-metals, which have a 100% spin polarization at the
Fermi level being essential for spintronics.

The possible existence of half-metallic antiferromagnets was first pointed out by van
Leuken and de Groot [15], who proposed CrMnSb and V0.875Mn0.125FeSb0.875In0.125 as
candidates for half-metallicity. Later, Pickett [16] showed by ab initio calculations that the
double perovskites La2VCuO6, La2MnO6 and La2MnCoO6 are also candidates for half-metallic
antiferromagnets. However, experimentally neither of these candidates have been confirmed
and it is likely that the considered magnetic crystal structures are not thermodynamically stable.
Since by molecular beam epitaxy many thermodynamically unstable systems can be produced,
we consider it likely that the proposed half-metallic antiferromagnetic DMSs can be realized in
the future.

In this paper we give an extensive discussion of half-metallic antiferromagnetic DMS
systems. Firstly we discuss some simple sum rules connecting the moments and the valences
of antiferromagnetic and ferrimagnetic half-metallic DMSs. In the latter cases the moments
of the two subsystems are also aligned antiparallel, but they are only partially compensated,
such that the moment of an impurity pair is a finite integer number. Then we present ground-
state calculations for the antiferromagnetic systems Zn1−2xCrx FexSe and Zn1−2x VxCox Se. We
show that, for III–V semiconductors, antiferromagnetic DMSs with half-metallic behaviour do
not exist in GaAs, but are more likely to exist in wide band gap semiconductors like GaN. In the
ab initio calculations we use the KKR-CPA method as well as the PAW method as implemented
in the VASP code [17, 18]. In this supercell method the disorder is described by special
quasirandom structures (SQSs). Both methods give very similar results. Then we calculate
the exchange coupling constants between the different impurity pairs and calculate the Néel
temperatures of the antiferromagnetic systems and the Curie temperatures of the ferrimagnetic
ones by Monte Carlo simulations. Due to the short range of the exchange couplings the critical
temperatures of these systems are strongly reduced as compared to the mean-field estimates.
This is quite analogous to recent findings [19–22] that percolation effects strongly reduce the
Curie temperatures of ‘elemental’ DMSs like (Ga, Mn)N or (Zn, Cr)Te.

2. Theory

2.1. Simple sum rules

Here we derive some simple sum rules connecting the total moments and the charges for half-
metallic systems. These sum rules are the result of simply counting the number of occupied
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Figure 1. (a) Schematic DOS of the impurity bands of a low-valent impurity 1 and of a high-valent
impurity 2 in a DMS. (b) Schematic DOS of the impurity states in a half-metallic antiferromagnet.
Impurities 1 and 2 are aligned antiparallel and form a joint impurity band at EF.

states in the system, and are always valid, if the system is half-metallic. For instance, they do
not change if the LDA or the LDA + U approximation is used. However, the state counting
only yields the total moments, not the local ones, which in fact are in a LDA + U treatment
sensitive to the U -values chosen. Following the arguments of Akai and Ogura [14], figure 1(a)
shows schematically the density of states in the gap of a dilute magnetic semiconductor. The
first figure shows the density of states (DOS) for a low-valent impurity 1 with partially occupied
majority states, while the second figure shows the analogous DOS for a higher-valent impurity
2, for which the majority states are fully and the minority states partially occupied. The total
moments M1 and M2 are related to the total valence charges Z1 and Z2 as M1 = �Z1 with
�Z1 = Z1 − NVB for 0 � �Z1 � 5 and M2 = 10 − �Z2 with �Z2 = Z2 − NVB

for 5 � �Z2 � 10 provided the systems are half-metallic. NVB is the number of valence
electrons of the substituted atom. For instance, for impurities on a III-site in a III–V compound
semiconductor NVB = 3, since three electrons of the impurity are needed to fill up the valence
band, so that only the remaining �Z electrons can form the moment. As an example, in (Ga,
Mn) three of the seven Mn electrons fill up the valence band states, substituting for the three
Ga electrons, and the four remaining electrons form the total magnetic moment of 4 μB.

As shown in [14], a half-metallic antiferromagnetic DMS can be found by doping with
equal numbers of low-valent and high-valent impurities. The antiferromagnetic configuration
exhibits a characteristic DOS shown in figure 1(b), where the partially occupied majority
band of impurity 1 lines up with the partially occupied minority band of impurity 2 to form
a joint band at EF, which stabilizes the antiferromagnetic configuration by double exchange.
The integer total moment MT of the pair in the case of half-metallicity is given by MT =
�Z1 +�Z2 − 10 = Z1 + Z2 − 10 − 2NVB since the available electrons for the impurity bands
fill up first the five lower-lying majority states of impurity 2, while the remaining electrons fill
up the joint band at EF. A half-metallic antiferromagnet with vanishing moment MT = 0 can
exist if �Z1 + �Z2 − 10 = 0 or Z1 + Z2 = 10 + 2NVB. For impurities on the III-site in
III–V compounds this condition is Z1 + Z2 = 16, while for impurities on the II-site in II–VI
semiconductors Z1 + Z2 = 14 must be satisfied. Thus only the following combinations are
possible candidates for half-metallic antiferromagnets:

II site in II–VI: Cr–Fe, V–Co and Ti–Ni

III site in III–V: Mn–Co and Cr–Ni.
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Other combinations with antiparallel alignment can exist; however, the total moment MT is
not fully compensated and has an integer value MT = ±1,±2, . . .. These systems are then half-
metallic ferrimagnetic DMSs. For instance, such ferrimagnetic systems with MT = ±1 could
be Zn1−2xCrx Cox Se or Ga1−2xMnx Fex As. Of course, many more ferrimagnetic combinations
can exist.

2.2. Electronic structure

The electronic structure calculations were performed using two complementary methods.
The main body of the calculations was performed using the Korringa–Kohn–Rostoker
(KKR) Green’s function method in the multipole-corrected atomic sphere approximation
(ASA+M) [23]. Empty spheres were included in the tetrahedral positions of the zinc blende
lattice in order to obtain good space-filling. Equal Wigner–Seitz radii were used for all
spheres, and the valence basis set consists of spdf orbitals where scalar relativistic corrections
are taken into account while spin–orbit effects are neglected. The effects of disorder were
treated in the framework of the coherent potential approximation (CPA). The local spin
density approximation was employed for the exchange–correlation potential by using the
parameterization of Perdew et al [24].

In order to check the accuracy of the CPA and ASA we have also performed supercell
calculations using the projector augmented wave (PAW) method as implemented in the Vienna
ab initio simulation package (VASP) [17, 18]. A energy cutoff of 350 eV was employed
and both the local spin density approximation (LSDA) and the LSDA + U method were
considered. In the LSDA + U calculations, the value of the Hubbard U parameter was fixed
to U = 3 eV and the exchange to J = 0.8 eV and was included on the d states of the magnetic
atoms. Disorder was taken into account by employing so-called special quasirandom structures
(SQSs) [25]. The SQS scheme is a method to create as good supercells as possible on random
disordered systems by minimizing the chemical short-range parameters. The quality of such
minimization depends of course of the size of the supercell. In the present calculations a 128-
atom supercell (a 4 × 4 × 4 zinc blende lattice) was used in which a total of six magnetic atoms
were included (three of each kind). This corresponds to a concentration x = 4.7%. A larger
supercell consisting in total of 250 atoms of which 12 were magnetic atoms (six of each kind)
was tested, but this did not yield any significant changes of the results compared to the 128
atom supercell.

2.3. Exchange interactions

The classical multicomponent Heisenberg Hamiltonian in zero external magnetic field can be
written in the following form:

H = −
∑

i j,QQ′
J QQ′

i j eQ
i · eQ′

j , (1)

where J QQ′
i j are exchange interactions, i, j are unit cell indices, Q, Q′ are atom type indices and

eQ
i is the unit vector parallel to the magnetization at the site i with atomic type Q. The positive

(negative) values of J QQ′
i j correspond to the ferromagnetic (antiferromagnetic) couplings,

respectively, and the magnitudes of the corresponding magnetic moments are included in
the definition of J QQ′

i j . The exchange interactions were obtained by mapping the electronic
structure calculations to the classical Heisenberg Hamiltonian. Here we employ the magnetic
force theorem to calculate the energy change due to small rotation of the moment directions of
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the atoms at sites i and j [26]. In the framework of KKR–ASA–CPA the energy change could
then be related to the exchange interaction by

J̄ Q,Q′
i j = − 1

8π i

∫

C
TrL

[
�

Q
i (z)ḡQQ′,↑

i j (z)�Q′
j (z)ḡQ′ Q,↓

j i (z)
]

dz. (2)

Here TrL denotes the trace over the angular momentum L = (�m), �
Q
i (z) = P Q,↑

i (z) −
P Q,↓

i (z) is a diagonal matrix defined via the potential functions P Q,σ

i (z) and is closely related

to the exchange splitting corresponding to the magnetic atom Q, and ḡQQ′,↑
i j (z) and ḡQ′ Q,↓

j i (z)
refer to site off-diagonal blocks of the conditionally averaged Green function, namely the
average over all configurations with a pair of magnetic atoms fixed at the sites i and j with
the components Q and Q′. The energy integration is performed along a contour in the complex
energy plane which encircles the occupied part of the valence band. It should be noted that the
present formalism neglects local environment effects of the exchange interactions, the so-called
plurality effect [27], which can only be accounted for using supercells.

2.4. Critical temperatures

The critical temperatures were evaluated using both the mean-field approximation (MFA)
and the more sophisticated Monte Carlo (MC) simulations. In the MFA, the critical (Néel)
temperature, TN, can be estimated in two ways. First, TN is proportional to the total
energy difference between the antiferromagnetic ground state and the disordered local moment
(DLM) configuration. The DLM state can be naturally treated in the framework of the
CPA: the magnetic atoms have collinear but random positive and negative orientations. For
instance, the Zn1−2x Mnx FexSe alloy is treated as Zn1−2x Mn+

x/2Mn−
x/2Fe+

x/2Fe−
x/2Se in the DLM

configuration. TN can then be estimated using the following expression:

kBT ∗MFA
N = 2

3

(EDLM − EAF)

c
, (3)

where EDLM and EAF are the total energies for the DLM and AF configurations, respectively,
c is the total concentration of magnetic atoms (c = 2x) and kB is the Boltzmann constant.
Alternatively, the mean-field estimate of TN can be estimated from the exchange interactions
J QQ′

i j [28, 29]. More specifically, TN is related to an eigenvalue problem of the real symmetric

matrix J(0) with elements J QQ′
(0): namely,

∑

Q′
J QQ′

(0)〈eQ′
z 〉 = 3kBT MFA

2
〈eQ

z 〉, (4)

J QQ′
(0) = x

∑

j

J QQ′
0 j , (5)

where 〈eQ
z 〉 is the thermodynamically averaged z component of the unit vector eQ

i . The Néel
temperature, T MFA

N , and the Curie temperature, T MFA
C , respectively, is then given by the highest

of the two eigenvalues T MFA of the 2 × 2 J(0) matrix. In principle, the expression using the
total energy difference is more accurate since all exchange interactions in the system are taken
into account. Moreover, the vertex corrections to the exchange interactions cancel exactly. It
should be noted that the above expressions employ the so-called virtual crystal approximation
(VCA) or the averaged lattice in order to deal with diluted magnetic systems. It is known from
earlier studies [19–22] that this approximation is very bad for diluted systems with localized
exchange interactions where disorder and percolation effects play an important role. Therefore
we have also evaluated TN using Monte Carlo simulations where both disorder and thermal
fluctuations are included in a numerically exact procedure. The MC simulations employed
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Figure 2. Density of states (DOS) of Zn0.9Cr0.05Fe0.05Se using the (a) KKR-ASA method (LDA),
(b) PAW method (LDA) and (c) PAW method (LDA + U ). Positive (negative) values correspond to
majority (minority) states. The total DOS has been scaled for better readability.

the Metropolis algorithm in which the critical temperature was evaluated from the peak in
some thermodynamic quantities (susceptibility and the specific heat) for the antiferromagnetic
systems. In the case of ferrimagnetic systems the critical temperature was evaluated by means
of the cumulant crossing method [30]. In all cases the lattice size was varied in order to employ
finite size scaling and the total number of magnetic atoms in the system was varied between
10 000 and 40 000. Ten disorder configurations were realized for each lattice size and the
thermal average of the magnetization was measured for around 30 000 Monte Carlo steps per
lattice site.

3. Results

3.1. Antiferromagnetic solutions

In all following results on the doped II–VI materials we use ZnSe as the semiconductor host
material and GaAs for the III–V systems. We believe that the results for ZnSe are typical also
for other II–VI semiconductors. The experimental lattice constant was used in all calculations.

3.1.1. Density of states and magnetic moments. In figure 2 the calculated density of states
of Zn0.9Cr0.05Fe0.05Se is displayed. The CPA calculations (figure 2(a)), and supercell PAW
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Figure 3. Density of states (DOS) of Zn0.90V0.05Co0.05Se using the KKR-ASA method (LDA).
Positive (negative) values correspond to majority (minority) states. The total DOS has been scaled
for better readability.

calculations (figure 2(b)) using the LDA agree well with each other and also agree well with the
CPA calculations in [14]. The PAW calculations show slightly more features in the DOS due to
the smaller smearing used in the calculations compared to the CPA calculations. A half-metallic
ground state is found with zero total magnetic moment. The average local magnetic moment
on Cr and Fe was found to be 3.48 and −3.26 μB in the KKR calculation. The corresponding
values in the PAW calculations were 3.41 and −3.15 μB. Note that in the PAW method these
values refer to the moments inside a sphere surrounding each atom. The moments should be
compared with the total moment of 4 μB per impurity for the ferromagnetic (Zn, Cr)Se and
(Zn, Fe)Se systems (however, the local magnetic moments are basically the same). The fact
that we have small induced magnetic moments in the interstitial region and on the Zn and Se
atoms, and the fact that the system is half-metallic, make the total magnetic moment to average
to zero (integer number) in the whole cell. Around the Fermi level a common impurity band
in the spin-up channel originating from the Cr and Fe d states is clearly present and is well
understood from hybridization. The hybridization of these states lowers the band energy and
also determines the magnetic coupling of the system.

The effect of electron correlations using the LDA + U method is displayed in figure 2(c).
The effect on the electronic structure is briefly the following: it causes an additional splitting of
the states, and the band gap in the spin-down channel increases. The local magnetic moments
also slightly increase compared with the LDA values, which is rather typical for transition
metals.

In figure 3 a similar plot of the calculated DOS of Zn0.9V0.05Co0.05Se is displayed using the
KKR-CPA method. The electronic structure is very similar to that of Zn0.9Cr0.05Fe0.05Se but
the important common band for the V and Co atoms around EF is more pronounced. The local
magnetic moments on the V and Co atoms were 2.16 μB and −1.92 μB, respectively. Again,
induced moments on the Zn and Se atoms and the half-metallicity give zero total magnetic
moment per unit cell.

In figure 4 the density of states for the III–V system Ga1−2xMnxCoxAs with x = 0.047 is
displayed using the PAW method and the LDA. From the counting rules it is expected that this
combination of transition metals should result in an antiferromagnetic material. However, as
clearly seen from the density of states the system is not at all half-metallic but rather metallic.
Instead of zero total magnetic moment the system has a net magnetic moment of approximately
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Figure 4. Density of states (DOS) of Ga0.9Mn0.05Co0.05As using the PAW method (LDA). Positive
(negative) values corresponds to majority (minority) states. The total DOS has been scaled for better
readability.

2 μB per unit cell, where the average local magnetic moment on the Mn and Co atoms were
3.43 μB and −1.48 μB, respectively. As the reason for the discrepancy between the theory
and the calculations could be assigned to the local density approximation we also performed
additional LDA + U calculations but still the system remained metallic. Clearly the reason for
the metallic behaviour is the failure of Co impurities in GaAs to support a high-spin moment
of 4 μB, which could compensate the 4 μB moment of Mn in GaAs. Indeed Ga1−x Cox As
is not half-metallic. However, as was shown by Sato et al [31], Co in (Ga, Co)N is nearly
half-metallic in the LDA calculation. Therefore we expect that in an LDA + U treatment with
a reasonable U value of 3–4 eV, (Ga, Co)N would become half-metallic and as a result also
Ga1−2xMnx CoxN might be a half-metallic antiferromagnet. In order to test this concept, we
did perform a LDA + U calculation (U = 3 eV) of Ga1−2xMnx Cox N and indeed the system
was found to be half-metallic. In the LDA, however, the system remains metallic. Similar
arguments are also valid for the second candidate for half-metallic antiferromagnetism based
on III–V semiconductors, i.e. Ga1−2xCrxNix As. The calculations give a magnetic solution, but
no half-metallicity. This is in line with the observation, that Ni in (Ga, Ni)As is not magnetic at
all. Therefore Ni cannot supply a spin moment of 3 μB necessary for half-metallicity. However,
using the same arguments as above, Ga0.9Cr0.05Ni0.05N is indeed becoming a half-metallic
antiferromagnet according to our calculations using a LDA + U treatment. Thus, it seems
that for wide band gap semiconductors the hybridization with the valence band p states is
sufficiently decreased, so that many more half-metallic antiferromagnets can exist.

3.1.2. Exchange coupling parameters. In figure 5 the calculated magnetic exchange
interactions using the LSDA approximation in Zn0.9Cr0.05Fe0.05Se and Zn0.9V0.05Co0.05Se are
displayed as a function of distance. Due to the half-metallicity, disorder and the fact that
the important impurity bands from the magnetic atoms are situated in the band gap region,
the exchange interactions are strongly damped with respect to the distance [32, 19, 20].
Furthermore, the exchange interactions are essentially non-zero only for distances shorter than
1.5 lattice constants. The exchange interactions between a Cr atom and another Cr atom are
ferromagnetic, while the exchange interactions between an Fe atom and another Fe atom are
weakly antiferromagnetic. The exchange interactions between a Cr atom and an Fe atom
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Figure 5. Exchange interactions of (a) Zn0.9Cr0.05Fe0.05Se and (b) Zn0.9V0.05Co0.05Se using the
KKR-ASA–CPA method and the LSDA approximation plotted as a function of distance d (in units
of the lattice constant a).

are strongly antiferromagnetic and basically determine the overall magnetic structure of the
system. As discussed by Akai and Ogura, the strong antiferromagnetic Cr–Fe coupling arises
from the double exchange mechanism in the joint impurity band. Since the d states of Cr
in this band are mostly filled and the Fe DOS is shifted to higher energies, superexchange
also plays an important role. In fact it is more or less impossible to distinguish both
mechanisms in this case. The slightly negative Fe–Fe interaction is balanced by the indirect
ferromagnetic Fe–Cr–Fe interaction provided by the strong antiferromagnetic interaction with
the Cr atoms.

The situation in Zn0.9V0.05Co0.05Se is slightly different (figure 5(b)). Here the exchange
interactions between atom components of the same type (V–V and Co–Co) are ferromagnetic
with a dominating nearest neighbour interaction. The exchange interaction between V and Co
is strongly antiferromagnetic. This situation can be understood from the complete overlap
between the V DOS and the Co DOS, which due to double exchange leads to strong
antiferromagnetic V–Co coupling and at the same time to strong ferromagnetic V–V and Co–Co
coupling.

3.1.3. Critical temperatures. The critical temperatures were evaluated using the above
calculated exchange parameters and then applying statistical methods. The methods used
were the mean-field approximation (MFA) and the Monte Carlo (MC) simulations. It should
be noticed that the MFA uses the virtual crystal approximation (VCA) to treat the disorder
while the MC simulations treat the disorder exactly without any approximations using large
supercells. Since the calculated exchange interactions are rather short ranged it is expected that

9
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Figure 6. Calculated critical temperatures of (a) Zn1−2x Crx Fex Se and (b) Zn1−2x Vx Cox Se in K
using exchange parameters from the LSDA. MFA-VCA∗ denotes the mean-field approximation
where TN is estimated from the total energy difference between the antiferromagnetic and
DLM configuration, MFA-VCA denotes the mean-field approximation results estimated from the
exchange interactions and MC the result from MC simulations.

the VCA will strongly overestimate the critical temperatures. In figure 6 the calculated critical
temperatures are displayed.

Ultimately, spintronics systems should have a critical temperature well above room
temperature in order to work satisfactorily in applications. The mean-field approximation give
results that are above room temperature for all concentrations considered. However, the more
sophisticated MC method gives much lower values for the critical temperatures. Note that for
nearest neighbour interaction on a fcc lattice, which is the relevant sublattice for the transition
metal impurities, the threshold for percolation is 20%. In addition, around 20% is also the
practical solubility limit for transition metal atoms in II–VI compounds. Therefore, for this
concentration (x = 10%), the largest calculated Néel temperature of 140 K is way too low for
applications.

In order to see what influence electron correlations have on the critical temperature, we
performed some additional supercell calculations and calculated the energy difference between
the ferromagnetic and antiferromagnetic configurations using both LSDA and LSDA + U
approximations. The critical temperature is to a very crude approximation proportional to this
energy difference in the mean-field approximation. The inclusion of a Hubbard U lowers this
energy difference compared to the LSDA result, meaning that the expected critical temperature
in LSDA + U will be lower than the LSDA results. The effect on the anion was studied
by calculating TN in the mean-field approximation for Zn0.9Cr0.05Fe0.05Te and comparing this
result to Zn0.9Cr0.05Fe0.05Se given above. The overall electronic structure is similar in the two
systems but ZnTe has a larger lattice parameter and smaller band gap compared to ZnSe. The
critical temperature estimated from the energy difference between the antiferromagnetic and
DLM state was found to 544 K in the case of ZnTe host and 437 K for the ZnSe host. However,
the critical temperatures using the more exact MC method is not expected to differ much,
although it will be slightly larger for the ZnTe host.
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Figure 7. Total DOS of Zn0.90Cr0.05Co0.05Se using the KKR-ASA method (LDA). Positive
(negative) values correspond to majority (minority) states.

3.2. Ferrimagnetic solutions

In this section we present results of combinations of magnetic atoms which give rise to a
ferrimagnetic solution, i.e. the local magnetic moments do not fully compensate each other
and therefore the system has a finite integer magnetic moment as discussed previously.

3.2.1. Density of states and magnetic moments. Figure 7 shows the calculated density of states
Zn0.9Cr0.05Co0.05Se obtained using the KKR-CPA method. The system is half-metallic with a
net magnetic moment of 1 μB per cell. The average local magnetic moments on the Cr and Co
atoms are 3.35 μB and −2.10 μB, respectively. The total moments per impurity for the DMSs
(Zn, Cr)Se and (Zn, Co)Se are 4 μB and 3 μB, respectively. The overall electronic structure is
very similar to the antiferromagnetic DMS systems, but with the important difference that the
system has a net magnetic moment and is ferrimagnetic.

3.2.2. Exchange interactions and critical temperatures. Using the same methodology as for
the antiferromagnetic materials, we calculated the exchange interactions for the ferrimagnetic
systems Zn0.9Cr0.05Co0.05Se and Zn0.9Mn0.05Fe0.05Se (figure 8). In the first case the exchange
interactions are very similar to those in figure 5(b), i.e. the exchange interactions between
atoms of the same type (Cr–Cr and Co–Co) are ferromagnetic while interactions between
atoms of different type (Cr–Co) are antiferromagnetic. The strongest interaction is the one
between Cr and Co, which controls the overall magnetic structure of the system. The situation
in Zn0.9Mn0.05Fe0.05Se is rather different (figure 8(b)). Here, the exchange interactions between
atoms of same type (Mn–Mn and Fe–Fe) are also antiferromagnetic. Again the largest
interaction is the antiferromagnetic coupling between the Mn and Fe atoms; however, the Mn–
Mn interaction is also antiferromagnetic and of nearly equal size, while the Fe–Fe interaction
is very small. Clearly this is a complicated system, since the strong Mn–Fe interaction asks
for an antiparallel alignment of both subsystems, while the strong antiferromagnetic Mn–Mn
interaction and the weaker Fe–Fe interaction ask for disordered local moment states for the
subsystems. It is therefore not clear what interaction will win.

In figure 9 we show the critical temperatures for Zn0.90Cr0.05Co0.05Se and
Zn0.9Mn0.05Fe0.05Se as calculated in the mean-field approximation and by Monte Carlo sim-
ulations. Two variants of the mean-field approximation are used: the minimization of the
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Figure 8. Exchange interactions of (a) Zn0.90Cr0.05Co0.05Se and (b) Zn0.9Mn0.05Fe0.05Se plotted
as a function of distance d/a, where a is the lattice constant.

total energy within the CPA formalism indicated by MFA-VCA∗, and the MFA solution of
the Heisenberg model, as indicated in equations (4), (5) (MFA-VCA). For the estimation of
the Curie temperatures of the ferrimagnets, Binder’s cumulant expression has been used. For
Zn0.90Cr0.05Co0.05Se the calculated critical temperatures are very similar to the Néel temper-
atures of Zn0.90Cr0.05Fe0.05Se in figure 6. In particular, the mean-field results are very high;
however, the exact results obtained by Monte Carlo (MC) simulations are disappointingly low
due to the percolation problem.

In Zn0.9Mn0.05Fe0.05Se, the dominating antiferromagnetic interactions between all atoms
makes the situation different. Here the mean-field approximation predicts finite TN, both
from total energy calculations and from the Heisenberg model (note the reduced scale in
figure 9(b)). However, using the more exact Monte Carlo simulations, the system does not
develop any detectable magnetic order and stays in the disordered state all the way down to
zero temperature. This is plausible since the frustration inherent in the all antiferromagnetic
interactions can be minimized by non-collinear moment arrangements, which cannot be
described by the mean-field approximation.

4. Conclusions

In conclusion, we have given an extensive study of half-metallic antiferromagnetic diluted
magnetic semiconductors using a combination of electronic structure calculations and statistical
methods. The disorder of the atoms is treated carefully using both the coherent potential
approximation (CPA) and large supercells. It is found that both methods give similar results
for the electronic structure calculations. The calculated magnetic exchange parameters in a
Heisenberg model have subsequently been used in Monte Carlo (MC) simulations to estimate
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Figure 9. Calculated critical temperatures of (a) Zn1−2x Crx Cox Se and (b) Zn1−2x Mnx Fex Se in
K. MFA-VCA∗ denotes the mean-field approximation where TN is estimated from the total energy
difference between the antiferromagnetic and DLM configuration, MFA-VCA denotes the mean-
field approximation results estimated from the exchange interactions, and MC the result from MC
simulations.

critical temperatures. The MC method treats disorder exactly using very large supercells and
the results from these simulations were compared to those from the mean-field approximation.
It is shown that the latter method strongly overestimates the critical temperatures and that the
realistic Monte Carlo values are disappointedly low. In total we have predicted quite a few
half-metallic antiferromagnets and indicated that even more half-metallic ferrimagnets should
exist. We hope that our results encourage experimental studies of these systems.
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